On the Approach of Automatic Adjustments for Gaussian-Mixture Clustering

نویسندگان

  • Chin-Hwa Kuo
  • Tzu-Chuan Chou
  • Meng-Chang Chen
چکیده

In this paper, we discuss the dual-problem of adjusting the mixture number and avoiding local optima in the estimation of a Gaussian mixture. This estimation is widely used in unsupervised-classification applications; however, its results are serially sensitive to the initial setting, which is difficult to optimize. It is also difficult to automatically designate the mixture number in advance. In much of the literature, these two issues are discussed separately, meaning that one is considered at the expense of the other. To overcome this problem, we present some strategies that automatically and simultaneously adjust the mixture number and escape from local optima. The evaluation results are very encouraging and show that the proposed strategies are effective.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Method for E-Maximization and Hierarchical Clustering of Image Classification

We developed a new semi-supervised EM-like algorithm that is given the set of objects present in eachtraining image, but does not know which regions correspond to which objects. We have tested thealgorithm on a dataset of 860 hand-labeled color images using only color and texture features, and theresults show that our EM variant is able to break the symmetry in the initial solution. We compared...

متن کامل

Fuzzy Clustering Approach Using Data Fusion Theory and its Application To Automatic Isolated Word Recognition

 In this paper, utilization of clustering algorithms for data fusion in decision level is proposed. The results of automatic isolated word recognition, which are derived from speech spectrograph and Linear Predictive Coding (LPC) analysis, are combined with each other by using fuzzy clustering algorithms, especially fuzzy k-means and fuzzy vector quantization. Experimental results show that the...

متن کامل

Recognizing the Emotional State Changes in Human Utterance by a Learning Statistical Method based on Gaussian Mixture Model

Speech is one of the most opulent and instant methods to express emotional characteristics of human beings, which conveys the cognitive and semantic concepts among humans. In this study, a statistical-based method for emotional recognition of speech signals is proposed, and a learning approach is introduced, which is based on the statistical model to classify internal feelings of the utterance....

متن کامل

Improved Automatic Clustering Using a Multi-Objective Evolutionary Algorithm With New Validity measure and application to Credit Scoring

In data mining, clustering is one of the important issues for separation and classification with groups like unsupervised data. In this paper, an attempt has been made to improve and optimize the application of clustering heuristic methods such as Genetic, PSO algorithm, Artificial bee colony algorithm, Harmony Search algorithm and Differential Evolution on the unlabeled data of an Iranian bank...

متن کامل

A Cooperative and Penalized Competitive Learning Approach to Gaussian Mixture Clustering

Competitive learning approaches with penalization or cooperation mechanism have been applied to unsupervised data clustering due to their attractive ability of automatic cluster number selection. In this paper, we further investigate the properties of different competitive strategies and propose a novel learning algorithm called Cooperative and Penalized Competitive Learning (CPCL), which imple...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006